Vlbratlonal Motlon Chapter} 19

*  Why should soldlersnot march In ste hen they go over
a bridge?

* Why do you need to "pump" your legs when you begin
swinging on a park swing?

* How can you carry a full cup of coffee without splashing it?
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Be sure you know how to:

* Apply Hooke's law to analyze forces exerted by
springs (Section 6.4).

« Use radians to describe angles (Section 8.1).

- Draw an energy bar chart for a process and
convert it into an equation (Sections 6.2 and
6.6).

© 2014 Pearson Education, Inc.



What's new in this chapter

- We have studied linear motion—objects moving
In straight lines at either constant velocity or
constant acceleration.

* We have also studied objects moving at
constant speed in a circle.

* In this chapter we encounter a new type of
motion, in which both direction and speed
change.
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Observations of vibrational motion

- When you walk, your arms and legs swing back and
forth. These motions repeat themselves.
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« The back-and-forth motion of an object that passes
through the same positions is an important feature of
vibrational motion.
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Observational experiment

OBSERVATIONAL EXPERIMENT TABLE

19.1 Some features of vibrational motion.

Observational experiment Analysis
Experiment 1. A cart attached to a relaxed spring sits at rest In all experiments, we choose
on a horizontal surface at position 0. the cart as the system.

The spring is relaxed and
the sum of the forces exerted
on the cart by other objects is

_lx.\a\.:\,v\.; VAAMEL

NSur(wconCm
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0 i zero when at position 0.
Experiment 2. (a) Now pull the cart to the right and release The spring exerts a force on
it. The cart starts to move back toward position 0. the cart toward the left.
The sum of the forces exerted
—l:\,- NANANNANNNA on the cart now points to
— the left and causes the cart
) " to start moving left toward el
position 0. F spvieg on Con
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Observational experiment

19.1 Some features of vibrational motion. (Continued)

Observational experiment Analysis
(b) The cart is moving fast when it reaches position 0 and As the cart passes position 0, the ¥
overshoots that position. sum of the forces that other I
: objects exert on the cart is again
e zero. But since it is moving, N
-[NA\ AAAN \.--\::‘\E it continues moving. SN
: x s !
9 F, Easth on Cart
(€) The cart now slows down and eventually stops to the left After passing position 0, the y
of position 0, then starts moving back to the right toward spring exerts a force to the V
position 0. right toward position 0;

the sum of the forces

_M_ points to the right, causing N st en car

the cart to slow down, stop, - x
0 " and move back toward 7 F gorig on Can
position 0. et }
(d) The cart overshoots again and eventually stops where it
started, on the right side of 0. The motion then repeats itself.
Patterns

The system is at rest in a particular position when not vibrating. When the cart is at rest in this position, the sum of the forces
that other objects exert on it is zero. When the cart is displaced from this position and released, the cart moves back and forth,
passing through that position in two opposite directions. If displaced from the rest position, a force is exerted on the vibrating
object that tends to return it to that position.
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Equilibrium position

Equilibrium position (or just equilibrium) The position at which a vibrating
object resides when not disturbed. When resting at this position, the sum of the
forces that other objects exert on it is zero. During vibrational motion the object
passes back and forth through this position from two opposite directions.
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Restoring force

Restoring force When an object is displaced from equilibrium, some other ob-
ject exerts a force with a component that always points opposite the direction of the
vibrating object’s displacement from equilibrium. This force tends to restore the
vibrating object back toward equilibrium.
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Observational experiment

19.2  Multiple representation analysis of a cart on a spring.

Observational experiment
A cart attached to a spring is pulled to the right (po-
sition +A) and released. It moves past equilibrium
(position 0) at high speed and briefly stops an equal
distance to the left of equilibrium (position ~A). The
spring pulls the cart back toward the right. The pro-
cess repeats over and over. We analyze the process
using motion diagrams, force diagrams, and energy
bar charts.
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Motion (cart is the system)
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Energy (cart and spring are the system)
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Pattern

Restoring force The restoring force is zero as the vibrating object passes through the equilibrium position and has maximum
magnitude when at the extreme positions on the left and right.

Potential and kinetic energy The energy of the vibrating system (the cart and spring) varies between maximum potential energy

when at the extreme positions to maximum kinetic energy as the object passes equilibrium. In between, the energy is a combi-

nation of kinetic and potential energy.
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Amplitude

Amplitude The amplitude A of a vibration is the magnitude of the maximum
displacement of the vibrating object from its equilibrium position.
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Patterns observed In vibrational motion

* An object passes through the same positions,
moving first in one direction and then in the
opposite direction.

* The object passes the equilibrium position at
high speed. When it overshoots, a restoring
force exerted on it by some other object points
back toward equilibrium.

* A system composed of the vibrating object and
the object exerting the restoring force has
maximum potential energy when at extreme
positions and maximum kinetic energy at
equilibrium.
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Period

Period The period T of a vibrating object is the time interval needed for the object
to make one complete vibration—from the clock reading when it passes through
a position while moving in a certain direction until the next clock reading when it
passes through that same position moving in the same direction. The unit of period
is the second.
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Frequency

Frequency The frequency f of vibrational motion is the number of complete
vibrations of the system during one second. Frequency is related to period:

f=% (19.1)

The unit for frequency is the hertz (Hz), where 1 Hz = 1vib/s = 1s7".
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Kinematics of vibrational motion

* In an experiment, a motion @ T R cing
detector collects position, wk j
velocity, and acceleration-
versus-time data for a cart

vibrating on a spring. -4
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The acceleration-versus-time is proportional
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Consistency of motion diagram and graphs

(a) Comparing a motion diagram to its
corresponding position-versus-time graph
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Mathematical description of position as a
function of time

« The meanings of sine and cosine can be best
understood using a unit circle.
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Mathematical description of position
as a function of time

« A graph of x = A cos (6) looks very similar to the
position-versus-time graph produced by the
motion detector for a cart on a spring.

This graph has the same shape as the
position-versus-time graph in Figure 19 4a.

x=Acos0
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Mathematical description of position
as a function of time

* We can write the period function x(t) to represent
the position-versus-time graph:

x = Acos| —t
T

* Noticethatx=+Aatt=0. Ifan objectisatx =0
att =0, you can either adjust the cos function by
adding —(77/2) or use the sine function.
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Simple harmonic motion

» Simple harmonic motion (SHM) is motion that
can be described by the following equation:

x = Acos| —t
T

* Itis a mathematical model of motion.
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Position of a vibrating object as a function
of time

Table 19.3 Position of a vibrating object as a function of time.

Angle of the radius
Clock reading t of the Position x of the vector 0 (radians)
vibrating object shown vibrating object shown for the function Value of the function
in Figure 19.4a in Figure 19.4a x = Acosf x = Acos @
0(0s) A 0 A
T/4(15s) 0 /2 0
T/2(25s) —A T A
3T/4 (35) 0 3m/2 0
T (45) A 27r A
2T (85s) A 4 A
3T (12 s) A 6w A
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Mathematical description of velocity and
acceleration as a function of time

* If the position function is given by:

" (27Tt>
x = Acos| —
T

* Then the velocity and acceleration functions are:

(277) , (277' )
V, = Asin| —t
T T
(277)2 (277 >
a, = Acos\ —t
T T
* Ais the amplitude of the vibration; T is the
period of the vibration.
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The dynamics of simple harmonic motion

© 2014 Pearson Education, Inc.

(a)

(b)

The restoring force
Increases in magnitude
as the object is farther
from equilibrium.




Forces and acceleration for a cart on a
spring
« According to Hooke's law, the force that the

stretched spring exerts on a cart in the
X-direction Is:

FS onCx —kx
» Using Newton's second law, we get:
—ikex: k
a, — — = — —X
m m

- The cart's acceleration a, Is proportional to the
negative of its displacement x from the
equilibrium position.
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Period of vibrations of a cart attached to a
spring
Starting with:

And using:

x=Acos(-21t> q. = <27T>2ACOS<2—7TI‘>
I " T T
We get:
T=2m )"
— o0 _—
k

In this expression for period, there is no
dependency on the amplitude.
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The frequency of vibration of an object
attached to a spring

* Using the equation 1 = 277\/% and the relationship
f=1/T, we find:
1 k
f=5\m
aw m
* In our derivation, we assumed that the spring

obeys Hooke's law, that the spring has zero
mass, and that the cart is a point-like object.

« We also neglected friction.
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Energy of vibrational systems

* As a cart-spring system vibrates, the energy of

the system continuously changes from all elastic
tO a” k|n6t|C Table 19.4 Variation of energy during one vibration.
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Clock Elastic
reading potential Kinetic Total energy
t Displacement energy U, energy K Ueor
1 1.,
T —A KA 0 Uror = 5 kA®
1 1 2
=T 0 0 — MV ax 1
- . Upe = —MVipya
S 0 0 1 : AT
e —mv,
4 R
1, .2
0 A —kA* 0
2 1. .9
1 Uior = KA
2
T A EkAZ 0
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Relationship between the amplitude of the

vibration and the cart's maximum speed

. The equation v = %kAZ e %mvz + %kxz can be

i 2
rearranged to give:

* This makes sense conceptually:

— When the mass of the cart is large, it should
move slowly.

— If the spring Is stiff, the cart will move more
rapidly.
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Tip

In the above discussion we neglected the interactions of the system
with the surface of the track and with the air. These would both do negative
work on the system and gradually decrease its energy, eventually bringing
the vibrating system to rest.
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Example 19.5

« A spring with a 1.6 x 10* N/m spring constant
and a 0.1-kg cart at its end has a total vibrational
energy of 3.2 J.

1.
2.
3.

Determine t
Determine t
Determine t

displaced O.

ne amplitude of the vibration.
ne cart's maximum speed.

ne cart's speed when it is
010 m from equilibrium.

4. What would the amplitude of the vibration be
If the energy of the system doubled?
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The simple pendulum

* A pendulum is a vibrating system in which the motion is
very apparent.

» Consider a simplified model of a pendulum system that
has a compact object (a bob) at the end of a
comparatively long and massless string and that
undergoes small-amplitude vibrations.

— This idealized system is called a simple pendulum.
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The simple pendulum

* Two objects interact with

the bob of the pendulum.

— The string S exerts a
force that is always
perpendicular to the
path of the bob.

— Earth exerts a
downward
gravitational force.
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The pendulum




Observational experiment

OBSERVATIONAL EXPERIMENT TABLE

19.5 Multiple representation analysis of the pendulum.

VIDEO 19.5
Observational experiment Analysis

A bob hanging from a string is pulled to the right and Left side Middle Right side
released. It swings down past the equilibrium position -
at high speed and stops on the other side the same
distance to the left that it started on the right. The tan- \
gential component of the gravitational force pulls the —
bob back toward equilibrium. It overshoots and then G
returns to its starting position. The process repeats
over and over.

Motion (bob is the system)
a = - d
‘4\. V
v -
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Observational experiment

19.5 Multiple representation analysis of the pendulum. (Continued)

Observational experiment

Force (bob is the system)

Energy (bob and Earth are the system)
K U K U
1 D ()D p— 0 — D
Pattern

Restoring force The restoring force is zero as the vibrating object passes through the equilibrium position and has maximum
magnitude when at the extreme positions on the left and right sides.

Potential and kinetic energy The energy of the vibrating system varies between maximum potential energy when at the extreme
positions to maximum kinetic energy as the object passes equilibrium. In between, the energy is a combination of kinetic and
potential energy.
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The simple pendulum in relation to the cart

on aspring

* The motion of the pendulum has the same
patterns as the motion of the cart on a spring:

— It passes the equilibrium position from two
different directions.

— There Is a restoring force exerted on the bob.

— The system's energy oscillates between
maximum potential and maximum Kinetic.
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Experimental investigation of the period of a
simple pendulum

* We record a simple pendulum's period T for different
vibration amplitudes A, bob masses m, and string
lengths L.

Table 19.6 Effect of bob mass, string length, and amplitude on
pendulum period.

Bob mass m (kg) String length L (m) Amplitude 0 (°) Period T (s)

1.0 1.0 10.0 2.0
2.0 1.0 10.0 2.0
3.0 1.0 10.0 2.0
1.0 1.0 10.0 2.0
1.0 2.0 10.0 2.8
1.0 3.0 10.0 3.5
1.0 4.0 10.0 4.0
1.0 1.0 15.0 2.0
1.0 1.0 20.0 2.0
1.0 1.0 25.0 2.0

« The period appears to depend only on the string length.
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Deriving the period of a simple pendulum

* The tangential component of the restoring force

IS.
FHanie = —IE = = (f)_"@g)
E on Bt mg mg L L X

* The restoring force is directly proportional to the
bob's displacement from equilibrium, so the
period of a pendulum is:

L
T = 27r\/i
'

* The period does not depend on the mass or the
amplitude.
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Example 19.6

« Estimate the number of steps that a leg takes
each second while a person is walking—in other
words, the natural swinging frequency of the leg.
We will treat the leg as a simple pendulum.
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Conceptual Exercise 19.7

A child sits on a swing that hangs straight down
and Is at rest. Draw energy bar charts for the
child-swing-Earth system:

1. As a person pulls the child back in
preparation for the first swing.

2. At the moment the person releases the
swing while it is at its elevated position.

3. As the swing passes the equilibrium
position.

4. When the swing reaches half the maximum
height on the other side.

5. As the swing passes the equilibrium position
enEducaionlis ~v iy 1N the onnoacite diractinon
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Skills for analyzing processes involving
vibrational motion

* When problem solving:

— Represent the process with force diagrams
and/or bar charts If needed.

— If necessary:

» Use kinematics equations to describe the changing
motion of the object.

» Use force diagrams to apply the component form
of Newton's second law to the problem or use bar
charts to apply work-energy principles.

» Use the expressions for the period of an object
attached to a spring or to a pendulum.
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Example 19.9

* The Body Mass
(mass = 32 kQ)
when empty. W

Measurement Device chair
nas a vibrational period of 1.2 s
nen an astronaut sits on the

chair, the period changes to 2.1 s. Determine:

— The effective
spring.
— The mass of

spring constant of the chair's

the astronaut.

— The maximum vibrational speed of the
astronaut if the amplitude of vibration is

0.10 m.
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Including friction in vibrational motion

- So far we have mostly ignored the effect of friction on
vibrating objects.

— Without friction, a car would continue vibrating on its
suspension system for miles after going over a bump
on a road, and tall buildings would continue to sway
even after the wind had died down.
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Damped and undamped oscillators

(a) (b)

* You can observe the
effects of friction on a
simple system.
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Damping

* The phenomenon of decreasing vibration
amplitude and increasing period Is called
damping.

A

» Time

Position

- Damping is a useful aspect of the design of
vehicles and bridges.
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Including friction in vibrational motion

(a)

* A weakly damped system s gl
continues to vibrate for g
many periods.

* |n an overdamped system,
the vibrating system takes
a long time to return to the

Overdamped oscillator

equilibrium position, if it
ever does.
 In a critically damped

system, the vibrating object
returns to equilibrium in the

Critically damped oscillator

shortest time possible. §
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Vibrational motion with an external
driving force

 All real vibrations are damped and eventually
stop unless energy Is added to the system.

* We will investigate how external interactions of
the environment with a vibrating system could
lead to continuous vibrations.
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Observational experiment

OBSERVATIONAL EXPERIMENT TABLE

19.7 A forced vibration.

Observational experiment

Experiment 1. A young child sits on a

swing. You exert a steady force on the N

child and swing until the swing cable H

is at such an angle that the swing T

stops (this angle depends on the z? —;\\/\}
2 - PR | & 25

construction of the swing). There 7 . -

are no vibrations. Yool =R 77

Experiment 2. A young child swings
L
with a period 7 = 27 E You push her

gently and briefly every time just after she
reaches the peak of her vibration. Each
brief push is in the same direction as her
displacement. The pushes have the same
period as her swinging.

© 2014 Pearson Education, Inc.

Analysis

The swing, child, and Earth are the system (but not you).
You exerted a constant force that did positive work on the
swing. But no vibrations occurred during this time.

You exerted a variable force
that did positive work on the

+ W
swing. The energy of the system
increased. The amplitude of the
swing vibrations increases.
o H

Usyuem i = Usysum f



Observational experiment

19.7 A forced vibration. (Continued)

Observational experiment Analysis

Experiment 3. The child still swings with You did negative work on the £
: _ e swing. The energy of the system
pertad Ti= 2‘"\/;' Thigtime you push decreased. The amplitude of the
swing vibrations decreases.
0

= Usyucm {

her gently and briefly as she swings back
toward you, just before she reaches the
peak of her vibration. You push opposite
the direction of her displacement.

+ W
You do positive work sometimes and negative work at

other times (the net work over time is zero), Friction and
time you push her gently with a different period. Sometimes you air resistance cause the swinging amplitude to decrease.

push as she is moving back and at other times as she is moving
forward. Her amplitude becomes small and stays small.

L
Experiment 4. The child still swings with period T = 27 \/; This

Pattern

For an external force exerted on the swinging system to cause the amplitude to increase:

1. The external force has to be a variable force.
2. The external force must do positive work on the vibrating system.
3. The period (and therefore frequency) of the external force must match that of the vibrating system.
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Res O n an C e Vibrations of the 80-cm pendulums

are coupled by shaking the string.

® “

___._5() cm
: ”";.80 cm 1 R0 cm
N A 100 cm F W/
' 120 cm ()
== =

—
T'he 80-cm pendulums will vibrate

at the same frequency.
* Resonance occurs when some object in the environment
exerts a force on it that varies in time and does net

positive work over time.

— This work increases the total energy of the system
and therefore the amplitude of vibrations.

— The increase in energy occurs when the frequency of
the external force is the same as the natural
frequency of the system.
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Energy transfer through resonance

Vibrations of the 80-cm pendulums
are coupled by shaking the string.

[

. 50 cm
()
( "",8() wan L 80 cm
’ -

. 1 100 cm
. (& 1
: 120 cm ()

The 80-cm pendulums will vibrate
at the same frequency.

» Transfer of energy from one object to another
depends on two conditions:

— The natural frequencies of the objects must
be close.

— A mechanism must exist that allows one
object to do positive work on the other object.
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Energy transfer through resonance

(a)

* Resonance caused the
collapse of the Tacoma
Narrows Bridge In
Washington only four
months after its completion.

(b)
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Radiation absorption by molecules

* To maintain a consistent climate, Earth and its
atmosphere rely on a balanced exchange of
energy in and out of the system they represent.

— The energy absorbed by the Earth-atmosphere
system must be balanced by the energy
transferred out of that system.

— The energy Is transferred out when vibrating
molecules on Earth emit lower-frequency
Infrared radiation that travels away from Earth.
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Greenhouse effect

- Some of the radiation emitted by molecular
vibration on Earth is absorbed by CO, molecules
In the atmosphere.

— This absorption causes the vibrational energy
of these atmospheric molecules to increase.

— The excited CO, molecules re-emit the
Infrared radiation, much of which is
reabsorbed by molecules on Earth.

— Thus less energy is transferred out of the
system than is transferred in—and the planet
warms.
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